Amazon cover image
Image from Amazon.com

Plant development and evolution / edited by Ueli Grossniklaus.

Contributor(s): Material type: TextTextSeries: Current topics in developmental biology ; v. 131.Publisher: Cambridge, MA : Academic Press, 2019Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128098059
  • 0128098058
Subject(s): Genre/Form: Additional physical formats: No titleDDC classification:
  • 571.8/2 23
LOC classification:
  • QK731
Online resources:
Contents:
Front Cover; Plant Development and Evolution; Copyright; Contents; Contributors; Preface; Chapter One: Evolution of the plant body plan; 1. The significance of land plants; 2. Understanding evolution of the plant body plan; 3. Phylogenetic relationships of land plants and evolution of the land plant body plan; 4. Developmental patterns predating the origin of land plants; 5. Developmental innovations of land plants; 5.1. Alternation of haploid (gametophyte) and diploid (sporophyte) generations; 5.2. Evolution of three-dimensional growth in the haploid and diploid phases
5.3. Origin of spores, sporangia, and sporopollenin in land plants5.4. Origin of unbranched sporophyte forms; 5.5. Evolution of bifurcating axes; 5.6. Evolution of indeterminacy; 5.7. Evolution of meristems; 5.8. Origin of leaves; 5.9. Evolution of rooting systems; 5.10. Roots; 6. Conclusions and perspectives; Acknowledgments; References; Chapter Two: Evolution and co-option of developmental regulatory networks in early land plants; 1. The algal origin of land plants; 2. Early land plants; 2.1. Cryptospores and cryptophytes; 2.2. Macrofossil record; 3. The ancestral land plant
4. Co-option and novelty in developmental innovation4.1. Of rhizoids and root hairs; 4.2. The shoot apical meristem; 5. Conclusions; Acknowledgments; References; Chapter Three: The role of plant root systems in evolutionary adaptation; 1. Introduction; 2. Roots, root systems, and root biotic colonization; 2.1. What is a root?; 2.2. Lateral and adventitious roots; 2.3. Tap roots, fibrous roots, and root system architecture; 2.4. Rhizomes and rhizoids; 2.5. Mycorrhizae and Rhizobia; 3. From first roots to angiosperm root diversity; 3.1. Devonian rooting structures
3.2. Paraphyletic origin of true roots3.3. The oldest root meristem; 3.4. Angiosperm root system plasticity; 3.4.1. Monocots; 3.4.2. Dicots; 4. Geochemical consequences of root evolution; 5. Conclusions; Acknowledgments; References; Chapter Four: Patterning at the shoot apical meristem and phyllotaxis; 1. Introduction; 2. Development of the shoot apical meristem; 2.1. A brief overview of the organization and genetic regulation of shoot apical meristem activity; 2.2. Hormonal regulation of stem cell activity; 2.3. Feedback from differentiated cells
3. A few words on the history of phyllotaxis research: The development of the inhibitory field concept4. Phyllotaxis and chemical signals; 4.1. Coordinated polar auxin transport: Tissue level auxin distribution allowing for self-organizing organ initiation; 4.2. Auxin signaling: Downstream regulation of auxin distribution; 4.3. Regulation of auxin biosynthesis: Upstream regulation of auxin distribution; 4.4. Cytokinin: A secondary inhibitory field acting on the plastochrone; 5. Mechanical signals: How does physics affect phyllotaxis?; 6. The SAM geometry: Phyllotaxis diversity; 7. Conclusions
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Shelving location Call number Status Date due Barcode Item holds
Electronic Book Electronic Book Kuakarun Nursing Library Processing unit Online Access Eb34971
Total holds: 0

Online resource; title from PDF title page (ScienceDirect, viewed January 10, 2019).

Front Cover; Plant Development and Evolution; Copyright; Contents; Contributors; Preface; Chapter One: Evolution of the plant body plan; 1. The significance of land plants; 2. Understanding evolution of the plant body plan; 3. Phylogenetic relationships of land plants and evolution of the land plant body plan; 4. Developmental patterns predating the origin of land plants; 5. Developmental innovations of land plants; 5.1. Alternation of haploid (gametophyte) and diploid (sporophyte) generations; 5.2. Evolution of three-dimensional growth in the haploid and diploid phases

5.3. Origin of spores, sporangia, and sporopollenin in land plants5.4. Origin of unbranched sporophyte forms; 5.5. Evolution of bifurcating axes; 5.6. Evolution of indeterminacy; 5.7. Evolution of meristems; 5.8. Origin of leaves; 5.9. Evolution of rooting systems; 5.10. Roots; 6. Conclusions and perspectives; Acknowledgments; References; Chapter Two: Evolution and co-option of developmental regulatory networks in early land plants; 1. The algal origin of land plants; 2. Early land plants; 2.1. Cryptospores and cryptophytes; 2.2. Macrofossil record; 3. The ancestral land plant

4. Co-option and novelty in developmental innovation4.1. Of rhizoids and root hairs; 4.2. The shoot apical meristem; 5. Conclusions; Acknowledgments; References; Chapter Three: The role of plant root systems in evolutionary adaptation; 1. Introduction; 2. Roots, root systems, and root biotic colonization; 2.1. What is a root?; 2.2. Lateral and adventitious roots; 2.3. Tap roots, fibrous roots, and root system architecture; 2.4. Rhizomes and rhizoids; 2.5. Mycorrhizae and Rhizobia; 3. From first roots to angiosperm root diversity; 3.1. Devonian rooting structures

3.2. Paraphyletic origin of true roots3.3. The oldest root meristem; 3.4. Angiosperm root system plasticity; 3.4.1. Monocots; 3.4.2. Dicots; 4. Geochemical consequences of root evolution; 5. Conclusions; Acknowledgments; References; Chapter Four: Patterning at the shoot apical meristem and phyllotaxis; 1. Introduction; 2. Development of the shoot apical meristem; 2.1. A brief overview of the organization and genetic regulation of shoot apical meristem activity; 2.2. Hormonal regulation of stem cell activity; 2.3. Feedback from differentiated cells

3. A few words on the history of phyllotaxis research: The development of the inhibitory field concept4. Phyllotaxis and chemical signals; 4.1. Coordinated polar auxin transport: Tissue level auxin distribution allowing for self-organizing organ initiation; 4.2. Auxin signaling: Downstream regulation of auxin distribution; 4.3. Regulation of auxin biosynthesis: Upstream regulation of auxin distribution; 4.4. Cytokinin: A secondary inhibitory field acting on the plastochrone; 5. Mechanical signals: How does physics affect phyllotaxis?; 6. The SAM geometry: Phyllotaxis diversity; 7. Conclusions

Master record variable field(s) change: 072

There are no comments on this title.

to post a comment.