Amazon cover image
Image from Amazon.com

Biomaterials in orthopaedics and bone regeneration : design and synthesis / Preetkanwal Singh Bains, Sarabjeet Singh Sidhu, Marjan Bahraminasab, Chander Prakash, editors.

Contributor(s): Material type: TextTextSeries: Materials Horizons: from Nature to NanomaterialsPublication details: Singapore : Springer, 2019.Description: 1 online resource (261 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811399770
  • 9811399778
Subject(s): Genre/Form: Additional physical formats: Print version:: Biomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis.DDC classification:
  • 610.28 23
LOC classification:
  • R857.M3
Online resources:
Contents:
Intro; Preface; Contents; About the Editors; 1 Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode; 1 Introduction; 2 Materials and Methods; 2.1 Materials; 2.2 Pilot Experimentation; 2.3 Taguchi L18 Design of Experiments; 2.4 Experimentation; 3 Results and Discussion; 3.1 ANOVA of S/N Ratios for MRR, TWR, and SR; 3.2 Surface Topology and Phase Transformation of ED Machined Samples; 4 Conclusions; References; 2 Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools; 1 Introduction
2 Rules, Procedures and Methods Used in Computational Design of Biomaterials for Orthopaedic Implants2.1 Computational Methods for Biomaterial Design in Hip and Knee Replacements; 2.2 Bone Scaffolds; 3 Efficient Tools in the Biomaterial Design Process; 4 Conclusions; References; 3 EDM Surface Treatment: An Enhanced Biocompatible Interface; 1 Introduction; 2 Materials and Methods; 2.1 In Vitro Cytocompatibility Study; 3 Results and Discussion; 4 Conclusions; References; 4 Development of Cellular Construction for the Jaw Bone Defects Replacement by Selective Laser Melting; 1 Introduction
2 Materials, Equipment, and Results of Research2.1 Modeling of Cellular Constructions; 2.2 Ti6Al4V Powder Materials Characteristic; 2.3 Influence of Laser Melting Conditions on Geometrics of Bridges in Cellular Materials; 2.4 Ti6Al4V Cellular Materials Compression Test; 2.5 Testing of Cellular Structures Implantation into Laboratory Animals; 3 Conclusions; References; 5 Squeeze Film Bearing Characteristics for Synovial Joint Applications; 1 Squeeze Film Bearing Lubrication in Synovial Joints; 1.1 Squeeze Film Bearings in Synovial Joints; 1.2 Couple Stress Fluids
1.3 Layered Lubrication Analysis2 Parallel Plate Layered Lubrication with Couple Stress Fluids; 2.1 Porous-Surface Double-Layer Parallel Plate; 2.2 Porous-Surface Layer Parallel Plate; 2.3 Surface-Surface Layer Parallel Plate; 3 Partial Journal Bearing Layered Lubrication with Couple Stress Fluids; 3.1 Porous-Surface Double-Layer Partial Journal Bearing; 3.2 Porous-Surface Layer Partial Journal Bearing; 3.3 Surface-Surface Layer Partial Journal Bearing; 4 Conclusions; References
6 Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization1 Introduction; 2 Biomechanical Design; 2.1 Design Criteria; 2.2 Structural Design; 3 Simulations; 3.1 Stiffness; 3.2 Reaction Moment; 3.3 Strain Energy; 3.4 Stress Analysis; 3.5 Dynamics; 4 Optimization; 4.1 Formulation for Optimization Problem; 4.2 Methodology; 4.3 Results and Discussion; 5 Conclusions; References; 7 Biomaterials in Tooth Tissue Engineering; 1 Introduction; 2 Strategies for Tooth Regeneration; 2.1 Scaffold-Based Approach; 2.2 Scaffold-Free Approach
Summary: This book focuses on the recent advances in the field of orthopaedic biomaterials, with a particular emphasis on their design and fabrication. Biomimetic materials, having similar properties and functions to that of the natural tissue, are becoming a popular choice for making customized orthopaedic implants and bone scaffolds. The acceptability of these materials in the human body depends on the right balance between their mechanical and biological properties. This book provides a comprehensive overview of the state-of-the-art research in this rapidly evolving field. The chapters cover different aspects of multi-functional biomaterials design, and cutting-edge methods for the synthesis and processing of these materials. Advanced manufacturing techniques, like additive manufacturing, used for developing new biomimetic materials are highlighted in the book. This book is a valuable reference for students and researchers interested in biomaterials for orthopaedic applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Shelving location Call number Status Date due Barcode Item holds Course reserves
Electronic Book Electronic Book Kuakarun Nursing Library Processing unit Online Access Eb33707

วัสดุการแพทย์ (medical materials)

Total holds: 0

3 Innovative Approaches for Enamel Regeneration

Intro; Preface; Contents; About the Editors; 1 Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode; 1 Introduction; 2 Materials and Methods; 2.1 Materials; 2.2 Pilot Experimentation; 2.3 Taguchi L18 Design of Experiments; 2.4 Experimentation; 3 Results and Discussion; 3.1 ANOVA of S/N Ratios for MRR, TWR, and SR; 3.2 Surface Topology and Phase Transformation of ED Machined Samples; 4 Conclusions; References; 2 Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools; 1 Introduction

2 Rules, Procedures and Methods Used in Computational Design of Biomaterials for Orthopaedic Implants2.1 Computational Methods for Biomaterial Design in Hip and Knee Replacements; 2.2 Bone Scaffolds; 3 Efficient Tools in the Biomaterial Design Process; 4 Conclusions; References; 3 EDM Surface Treatment: An Enhanced Biocompatible Interface; 1 Introduction; 2 Materials and Methods; 2.1 In Vitro Cytocompatibility Study; 3 Results and Discussion; 4 Conclusions; References; 4 Development of Cellular Construction for the Jaw Bone Defects Replacement by Selective Laser Melting; 1 Introduction

2 Materials, Equipment, and Results of Research2.1 Modeling of Cellular Constructions; 2.2 Ti6Al4V Powder Materials Characteristic; 2.3 Influence of Laser Melting Conditions on Geometrics of Bridges in Cellular Materials; 2.4 Ti6Al4V Cellular Materials Compression Test; 2.5 Testing of Cellular Structures Implantation into Laboratory Animals; 3 Conclusions; References; 5 Squeeze Film Bearing Characteristics for Synovial Joint Applications; 1 Squeeze Film Bearing Lubrication in Synovial Joints; 1.1 Squeeze Film Bearings in Synovial Joints; 1.2 Couple Stress Fluids

1.3 Layered Lubrication Analysis2 Parallel Plate Layered Lubrication with Couple Stress Fluids; 2.1 Porous-Surface Double-Layer Parallel Plate; 2.2 Porous-Surface Layer Parallel Plate; 2.3 Surface-Surface Layer Parallel Plate; 3 Partial Journal Bearing Layered Lubrication with Couple Stress Fluids; 3.1 Porous-Surface Double-Layer Partial Journal Bearing; 3.2 Porous-Surface Layer Partial Journal Bearing; 3.3 Surface-Surface Layer Partial Journal Bearing; 4 Conclusions; References

6 Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization1 Introduction; 2 Biomechanical Design; 2.1 Design Criteria; 2.2 Structural Design; 3 Simulations; 3.1 Stiffness; 3.2 Reaction Moment; 3.3 Strain Energy; 3.4 Stress Analysis; 3.5 Dynamics; 4 Optimization; 4.1 Formulation for Optimization Problem; 4.2 Methodology; 4.3 Results and Discussion; 5 Conclusions; References; 7 Biomaterials in Tooth Tissue Engineering; 1 Introduction; 2 Strategies for Tooth Regeneration; 2.1 Scaffold-Based Approach; 2.2 Scaffold-Free Approach

This book focuses on the recent advances in the field of orthopaedic biomaterials, with a particular emphasis on their design and fabrication. Biomimetic materials, having similar properties and functions to that of the natural tissue, are becoming a popular choice for making customized orthopaedic implants and bone scaffolds. The acceptability of these materials in the human body depends on the right balance between their mechanical and biological properties. This book provides a comprehensive overview of the state-of-the-art research in this rapidly evolving field. The chapters cover different aspects of multi-functional biomaterials design, and cutting-edge methods for the synthesis and processing of these materials. Advanced manufacturing techniques, like additive manufacturing, used for developing new biomimetic materials are highlighted in the book. This book is a valuable reference for students and researchers interested in biomaterials for orthopaedic applications.

Print version record.

Added to collection customer.56279.3

There are no comments on this title.

to post a comment.